Learning high-dimensional reaction coordinates of fast-folding proteins using State Predictive information bottleneck and Bias Exchange Metadynamics

Author:

Pomarici Nancy D.,Mehdi Shams,Quoika Patrick K.,Lee Suemin,Loeffler Johannes R.,Liedl Klaus R.,Tiwary Pratyush,Fernández-Quintero Monica L.

Abstract

ABSTRACTBiological events occurring on long timescales, such as protein folding, remain hard to capture with conventional molecular dynamics (MD) simulation. To overcome these limitations, enhanced sampling techniques can be used to sample regions of the free energy landscape separated by high energy barriers, thereby allowing to observe these rare events. However, many of these techniques require a priori knowledge of the appropriate reaction coordinates (RCs) that describe the process of interest. In recent years, Artificial Intelligence (AI) models have emerged as promising approaches to accelerate rare event sampling. However, integration of these AI methods with MD for automated learning of improved RCs is not trivial, particularly when working with undersampled trajectories and highly complex systems. In this study, we employed the State Predictive Information Bottleneck (SPIB) neural network, coupled with bias exchange metadynamics simulations (BE-metaD), to investigate the unfolding process of two proteins, chignolin and villin. By utilizing the high-dimensional RCs learned from SPIB even with poor training data, BE-metaD simulations dramatically accelerate the sampling of the unfolding process for both proteins. In addition, we compare different RCs and find that the careful selection of RCs is crucial to substantially speed up the sampling of rare events. Thus, this approach, leveraging the power of AI and enhanced sampling techniques, holds great promise for advancing our understanding of complex biological processes occurring on long timescales.Abstract FigureTABLE OF CONTENT GRAPHIC

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Enhanced Sampling with Machine Learning;Annual Review of Physical Chemistry;2024-06-28

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3