Click-train evoked steady state harmonic response as a novel pharmacodynamic biomarker of cortical oscillatory synchrony

Author:

Gautam Deepshila,Raza Muhammad UmmearORCID,Miyakoshi M,Molina JL,Joshi YB,Clayson PE,Light GA,Swerdlow NR,Sivarao Digavalli V.

Abstract

AbstractSensory networks naturally entrain to rhythmic stimuli like a click train delivered at a particular frequency. Such synchronization is integral to information processing, can be measured by electroencephalography (EEG) and is an accessible index of neural network function. Click trains evoke neural entrainment not only at the driving frequency (F), referred to as the auditory steady state response (ASSR), but also at its higher multiples called the steady state harmonic response (SSHR). Since harmonics play an important and non-redundant role in acoustic information processing, we hypothesized that SSHR may differ from ASSR in presentation and pharmacological sensitivity. In female SD rats, a 2 s-long train stimulus was used to evoke ASSR at 20 Hz and its SSHR at 40, 60 and 80 Hz. Narrow band evoked responses were evident at all frequencies; signal power was strongest at 20 Hz while phase synchrony was strongest at 80 Hz. SSHR at 40 Hz took the longest time (∼180 ms from stimulus onset) to establish synchrony. The NMDA antagonist MK801 (0.025-0.1 mg/kg) did not consistently affect 20 Hz ASSR phase synchrony but robustly and dose-dependently attenuated synchrony of all SSHR. Evoked power was attenuated by MK801 at 20 Hz ASSR and 40 Hz SSHR only. Thus, presentation as well as pharmacological sensitivity distinguished SSHR from ASSR, making them non-redundant markers of cortical network function. SSHR is a novel and promising translational biomarker of cortical oscillatory dynamics that may have important applications in CNS drug development and personalized medicine.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3