Deviance detection in subthalamic neural population responses to natural stimuli in bats

Author:

Wetekam JohannesORCID,Hechavarría JulioORCID,López-Jury LucianaORCID,González-Palomares EugeniaORCID,Kössl ManfredORCID

Abstract

AbstractDeviance detection describes an increase of neural response strength caused by a stimulus with a low probability of occurrence. This ubiquitous phenomenon has been reported for multiple species, from subthalamic areas to auditory cortex. While cortical deviance detection has been well characterised by a range of studies covering neural activity at population level (mismatch negativity, MMN) as well as at cellular level (stimulus-specific adaptation, SSA), subcortical deviance detection has been studied mainly on cellular level in the form of SSA. Here, we aim to bridge this gap by using noninvasively recorded auditory brainstem responses (ABRs) to investigate deviance detection at population level in the lower stations of the auditory system of a hearing specialist: the batCarollia perspicillata. Our present approach uses behaviourally relevant vocalisation stimuli that are closer to the animals’ natural soundscape than artificial stimuli used in previous studies that focussed on subcortical areas. We show that deviance detection in ABRs is significantly stronger for echolocation pulses than for social communication calls or artificial sounds, indicating that subthalamic deviance detection depends on the behavioural meaning of a stimulus. Additionally, complex physical sound features like frequency- and amplitude-modulation affected the strength of deviance detection in the ABR. In summary, our results suggest that at population level, the bat brain can detect different types of deviants already in the brainstem. This shows that subthalamic brain structures exhibit more advanced forms of deviance detection than previously known.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3