Mapping immunological and host receptor binding determinants of SARS-CoV spike protein utilizing the Qubevirus platform

Author:

Sanders Carrie,Dzelamonyuy Aristide,Ntemafack Augustin,Alatoom Nadia,Nchinda Godwin,Georgiadis Millie,Waffo Alain BopdaORCID

Abstract

AbstractThe motifs involved in tropism and immunological interactions of SARS-CoV spike (S) protein were investigated utilizing the Qubevirus platform. We showed that separately, 14 overlapping peptide fragments representing the S protein (F1-14 of 100 residues each) could be inserted into the C-terminus of A1 on recombinant Qubevirus without affecting its viability. Additionally, recombinant phage expression resulted in the surface exposure of different engineered fragments in an accessible manner. The F6 from S425-525, was found to contain the binding determinant of the recombinant human angiotensin converting enzyme 2 (rhACE2), with the shortest active binding motif situated between residues S437-492. Upstream, another fragment, F7, containing an overlapping portion of F6 would not bind to rhACE2, confirming not just only that residues were linear but equally also the appropriate structural orientation of F6 upon the Qubevirus. The F6 (S441-460) and other inserts, including F7/F8 (S601-620) and F10 (S781-800), were demonstrated to contain important immunological determinants through recognition and binding of S protein specific (anti-S) antibodies. An engineered chimeric insert bearing the fusion of all three anti-S reactive epitopes, improved substantially the recognition and binding to their cognate antibodies. These results provide insights into humoral immune relevant epitopes and tropism characteristics of the S protein with implications for the development of subunit vaccines or other biologics against SARS-CoV.SignificanceMapping epitopes within the receptor binding domains of viruses which are essential for viral tropism is critical for developing antiviral agents and subunit vaccines. In this study we have engineered the surface of Qubevirus to display a peptide library derived from the SARS-CoV S protein. In biopanning with S protein antibodies, we have identified three peptide fragments (EP1, EP2 and EP3) which reacted selectively with antibodies specific to the S protein. We demonstrated that all recombinant phage displayed peptide fragments both individually and as chimera exposed important immunological epitopes to their cognate antibodies. A peptide fragment F6 situated at S425-525, was found containing the binding determinant of the recombinant human angiotensin converting enzyme 2 (rhACE2), with the shortest active binding motif situated between residues S437-492. The platform is rapidly to identify epitopes and receptor binding sites within viral receptors found in target host cell. Thus, this platform holds great significance.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3