Cytosine methylation affects the mutability of neighbouring nucleotides in human, Arabidopsis, and rice

Author:

Kusmartsev Vassili,Warnecke TobiasORCID

Abstract

ABSTRACTMethylated cytosines deaminate at higher rates than unmethylated cytosines and the lesions they produce are repaired less efficiently. As a result, methylated cytosines are mutational hotspots. Here, combining rare polymorphism and base-resolution methylation data in humans,Arabidopsis thaliana, and rice (Oryza sativa), we present evidence that methylation state affects mutation dynamics not only at the focal cytosine but also at neighbouring nucleotides. In humans, contrary to prior suggestions, we find that nucleotides in the close vicinity (±3nt) of methylated cytosines mutate less frequently. In contrast, methylation is associated with increased neighbourhood mutation risk inA. thalianaand rice. The difference in mutation risk associated with methylation is less pronounced further away from the focal CpG, is modulated by regional GC content, and enhanced in heterochromatic regions. Our results are consistent with a model where elevated risk at neighbouring bases is linked to lesion formation at the focal cytosine and subsequent long-patch repair. Our results provide evidence that cytosine methylation has a broader mutational footprints than commonly assumed. They also illustrate that methylation is not intrinsically associated with higher mutation risk for surrounding bases, but that mutagenic effects reflect evolved species-specific and lesion-specific predispositions to elicit error-prone long-patch DNA repair.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3