In vivo growth of Staphylococcus lugdunensis is facilitated by the concerted function of heme and non-heme iron acquisition mechanisms

Author:

Flannagan Ronald S.ORCID,Brozyna Jeremy R.,Kumar Brijesh,Adolf Lea A.,Power Jeffrey John,Heilbronner SimonORCID,Heinrichs David E.ORCID

Abstract

AbstractAcquisition of iron underpins the ability of pathogens to cause disease and Staphylococcus lugdunensis has increasingly been recognized as a pathogen that can cause serious infection. In this study, we sought to address the knowledge gap that exists regarding the iron acquisition mechanisms employed by S. lugdunensis, especially during infection of the mammalian host. Here we show that S. lugdunensis utilizes diverse genome encoded iron acquisition mechanisms to satisfy its need for this nutrient. Indeed, S. lugdunensis can usurp hydroxamate siderophores, and staphyloferrin A and B from S. aureus, using the fhuC ATPase-encoding gene. Acquisition of catechol siderophores and catecholamine stress hormones necessitates the presence of the sst-1 transporter-encoding locus, but not the sst-2 locus. Iron-dependent growth in acidic culture conditions necessitates the feoAB locus. Heme iron is acquired via expression of the iron-regulated surface determinant (isd) locus. During systemic infection of mice we demonstrate that while S. lugdunensis does not cause overt illness, it does colonize and proliferate to high numbers in the kidneys. By combining mutations in the various iron acquisition loci, we further demonstrate that only a strain mutated for all of isd, fhuC, sst-1, and feo, versus combination mutants carrying wild type copies of any one of those loci, was attenuated in its ability to proliferate to high numbers in kidneys. Taken together our data reveal that S. lugdunensis requires a repertoire of both heme and non-heme iron acquisition mechanisms to proliferate during systemic infection of mammals.ImportanceAcquisition of iron underpins the ability of pathogens to cause disease and Staphylococcus lugdunensis has increasingly been recognized as a pathogen that can cause serious infection. In this study, we sought to address the knowledge gap that exists regarding the iron acquisition mechanisms employed by S. lugdunensis, especially during infection of the mammalian host. Owing to an inability to synthesize siderophores, growth of S. lugdunensis is dramatically impaired in the presence of transferrin or serum, yet S. lugdunensis nonetheless uses several other genome-encoded iron acquisition mechanisms, in concert, to proliferate within the mammalian host. Therefore, the development of interventions that target bacterial iron acquisition systems should consider the overlapping function of distinct metal acquisition strategies deployed by bacterial pathogens.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3