EPSTEIN-BARR VIRUS LMP1 ENHANCES LEVELS OF MICROVESICLE-ASSOCIATED PD-L1

Author:

Harb Monica Abou,Sun Li,Meckes David G.ORCID

Abstract

AbstractExtracellular vesicles (EVs) circulate throughout the body and carry cargo that can be conferred to proximal or distant cells, making them major delivery vehicles for cellular communication. Epstein-Barr virus (EBV) infected cells release EVs that contain viral proteins such as the major viral oncogene, latent membrane protein 1 (LMP1). LMP1 has been shown to regulate the cellular gene expression of programmed cell death protein 1 ligand (PD-L1). PD-L1, a protein that suppresses the immune system by binding to PD-1, (a receptor found on cytotoxic T cells). PD-L1 has been recently found to be packaged into small EVs contributing to immune evasion of lung cancer cells. Recent studies establish that MVs are shed in very large amounts by tumor cells, and that elevated levels of MVs correlate to disease metastasis and cancers being more aggressive. Here, we demonstrate PD-L1 enrichment in MVs released from nasopharyngeal carcinoma cells and an important function of EBV LMP1 in regulating PD-L1 levels in MVs. These PD-L1+ MVs containing LMP1 likely contribute to the immunosuppressive microenvironment found in EBV-associated cancers.ImportanceAccumulating evidence over the past decade supports that viruses utilize EVs and associated pathways to incorporate viral products to evade eliciting an immune response, while concurrently enabling viral spread or persistence within the host. Considering that viral proteins confer very strong antigenic peptides that will be recognized by T cells, the regulation of the PD-1 pathway by the overexpression of MV-associated PD-L1 may be a strong immune evasion tactic utilized by viruses. The discovery that EBV LMP1 increases PD-L1 microvesicle secretion, identifies a new therapeutic target in immune blockade therapy. We expect that our findings will begin to clarify the mechanism of LMP1-mediated enhanced packaging of PD-L1 into MVs and may produce more specific targets to treat EBV-associated cancers. Consequently, identifying whether a disease is of viral origin through predictive MV biomarkers could further allow for more targeted therapies.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3