A semi-supervised Bayesian mixture modelling approach for joint batch correction and classification

Author:

Coleman StephenORCID,Nicholls KathORCID,Dopico Xaquin CastroORCID,Karlsson Hedestam Gunilla B.,Kirk Paul D.W.ORCID,Wallace ChrisORCID

Abstract

AbstractSystematic differences between batches of samples present significant challenges when analysing biological data. Suchbatch effectsare well-studied and are liable to occur in any setting where multiple batches are assayed. Many existing methods for accounting for these have focused on high-dimensional data such as RNA-seq and have assumptions that reflect this. Here we focus on batch-correction in low-dimensional classification problems. We propose a semi-supervised Bayesian generative classifier based on mixture models that jointly predicts class labels and models batch effects. Our model allows observations to be probabilistically assigned to classes in a way that incorporates uncertainty arising from batch effects. By simultaneously inferring the classification and the batch-correction our method is more robust to dependence between batch and class than pre-processing steps such as ComBat. We explore two choices for the within-class densities: the multivariate normal and the multivariatet. A simulation study demonstrates that our method performs well compared to popular off-the-shelf machine learning methods and is also quick; performing 15,000 iterations on a dataset of 750 samples with 2 measurements each in 11.7 seconds for the MVN mixture model and 14.7 seconds for the MVT mixture model. We further validate our model on gene expression data where cell type (class) is known and simulate batch effects. We apply our model to two datasets generated using the enzyme-linked immunosorbent assay (ELISA), a spectrophotometric assay often used to screen for antibodies. The examples we consider were collected in 2020 and measure seropositivity for SARS-CoV-2. We use our model to estimate seroprevalence in the populations studied. We implement the models in C++ using a Metropolis-within-Gibbs algorithm, available in the R packagebatchmix. Scripts to recreate our analysis are athttps://github.com/stcolema/BatchClassifierPaper.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3