IKKalpha-Mediated Non-canonical NF-kappaB Signaling is Required to Support Murine Gammaherpesvirus 68 LatencyIn Vivo

Author:

Cieniewicz BrandonORCID,Kirillov Varvara,Daher Isabel,Li XiaofanORCID,Oldenburg Darby G.,Dong QiwenORCID,Bettke Julie A.,Marcu Kenneth B.ORCID,Krug Laurie T.ORCID

Abstract

ABSTRACTNon-canonical NF-kappaB signaling is activated in B cells via TNF receptor superfamily members CD40, Lymphotoxin beta-R, and BAFF-R. The non-canonical pathway is required at multiple stages of B-cell maturation and differentiation, including the germinal center reaction. However, the role of this pathway in gammaherpesvirus latency is not well understood. Murine gammaherpesvirus 68 (MHV68) is a genetically tractable system used to define pathogenic determinants. Mice lacking the BAFF-R exhibit defects in splenic follicle formation and are greatly reduced for MHV68 latency. We report a novel approach to disrupt non-canonical NF-kappaB signaling exclusively in cells infected with MHV68. We engineered a recombinant virus that expresses a dominant negative form of IKKalpha, named IKKα-SA, with S176A and S180A mutations that prevent phosphorylation by NIK. We controlled for the transgene insertion by introducing two all-frame stop codons into the IKKα-SA gene. The IKKα-SA mutant but not the IKKα-SA.STOP control virus impaired LTbetaR-mediated activation of NF-kappaB p52 upon fibroblast infection. IKKα-SA expression did not impact replication in primary fibroblasts or in the lungs of mice following intranasal inoculation. However, the IKKα-SA mutant was severely defective in colonization of the spleen and in the establishment of latency compared to the IKKα-SA.STOP control and WT MHV68 at 16 dpi. Reactivation was undetectable in splenocytes infected with the IKKα-SA mutant, but reactivation in peritoneal cells was not impacted by IKKα-SA. Taken together, the non-canonical NF-kappaB signaling pathway is essential for the establishment of latency in the secondary lymphoid organs of mice infected with the murine gammaherpesvirus pathogen MHV68.IMPORTANCEThe latency programs of the human gammaherpesviruses EBV and KSHV are associated with B cell lymphomas. It is critical to understand the signaling pathways that are used by gammaherpesviruses to establish and maintain latency in primary B cells. We used a novel approach to block non-canonical NF-kappaB signaling only in the infected cells of mice. We generated a recombinant virus that expresses a dominant negative mutant of IKKalpha that is non-responsive to upstream activation. Latency was reduced in a route- and cell type-dependent manner in mice infected with this recombinant virus. These findings identify a significant role for the non-canonical NF-kappaB signaling pathway that might provide a novel target to prevent latent infection of B cells with oncogenic gammaherpesviruses.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3