Ronapreve (REGN-CoV; casirivimab and imdevimab) reduces the viral burden and alters the pulmonary response to the SARS-CoV-2 Delta variant (B.1.617.2) in K18-hACE2 mice using an experimental design reflective of a treatment use case

Author:

Tatham Lee,Kipar Anja,Sharp Joanne,Kijak Edyta,Herriott Joanne,Neary MeganORCID,Box Helen,Gallardo Toledo Eduardo,Valentijn Anthony,Cox Helen,Pertinez Henry,Curley Paul,Arshad Usman,Rajoli Rajith KR,Rannard Steve,Stewart James,Owen AndrewORCID

Abstract

AbstractBackgroundRonapreve demonstrated clinical application in post-exposure prophylaxis, mild/moderate disease and in the treatment of seronegative patients with severe COVID19 prior to the emergence of the Omicron variant in late 2021. Numerous reports have described loss ofin vitroneutralisation activity of Ronapreve and other monoclonal antibodies for BA.1 Omicron and subsequent sub-lineages of the Omicron variant. With some exceptions, global policy makers have recommended against the use of existing monoclonal antibodies in COVID19. Gaps in knowledge regarding the mechanism of action of monoclonal antibodies are noted, and further preclinical study will help understand positioning of new monoclonal antibodies under development.ObjectivesThe purpose of this study was to investigate the impact of Ronapreve on compartmental viral replication as a paradigm for a monoclonal antibody combination. The study also sought to confirm absence ofin vivoactivity against BA.1 Omicron (B.1.1.529) relative to the Delta (B.1.617.2) variant.MethodsVirological efficacy of Ronapreve was assessed in K18-hACE2 mice inoculated with either the SARS-CoV-2 Delta or Omicron variants. Viral replication in tissues was quantified using qRT-PCR to measure sub-genomic viral RNA to the E gene (sgE) as a proxy. A histological examination in combination with staining for viral antigen served to determine viral spread and associated damage.ResultsRonapreve reduced sub-genomic viral RNA levels in lung and nasal turbinate, 4 and 6 days post infection, for the Delta variant but not the Omicron variant of SARS-CoV-2 at doses 2-fold higher than those shown to be active against previous variants of the virus. It also appeared to block brain infection which is seen with high frequency in K18-hACE2 mice after Delta variant infection. At day 6, the inflammatory response to lung infection with the Delta variant was altered to a mild multifocal granulomatous inflammation in which the virus appeared to be confined. A similar tendency was also observed in Omicron infected, Ronapreve-treated animals.ConclusionsThe current study provides evidence of an altered tissue response to the SARS-CoV-2 after treatment with a monoclonal antibody combination that retains neutralization activity. These data also demonstrate that experimental designs that reflect the treatment use case are achievable in animal models for monoclonal antibodies deployed against susceptible variants. Extreme caution should be taken when interpreting prophylactic experimental designs when assessing plausibility of monoclonal antibodies for treatment use cases.

Publisher

Cold Spring Harbor Laboratory

Reference39 articles.

1. WHO. Vaccine Equity. https://www.whoint/campaigns/vaccine-equity 2022.

2. Peter Horby WB , Julian Hiscox , Meera Chand , Judith Breuer , Emma Sherwood , Andrew Owen . Antiviral drug resistance and the use of directly acting antiviral drugs (DAAs) for COVID-19. New and Emerging Respiratory Virus Threats Advisory Group (NERVTAG) - https://www.govuk/government/publications/nervtag-antiviral-drug-resistance-and-the-use-of-directly-acting-antiviral-drugs-daas-for-covid-19-8-december-2021/nervtag-antiviral-drug-resistance-and-the-use-of-directly-acting-antiviral-drugs-daas-for-covid-19-8-december-2021 2021.

3. Shutting the gate before the horse has bolted: is it time for a conversation about SARS-CoV-2 and antiviral drug resistance?

4. Subcutaneous REGEN-COV Antibody Combination to Prevent Covid-19

5. REGEN-COV Antibody Combination and Outcomes in Outpatients with Covid-19

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3