Real-time Auditory Feedback for Improving Gait and Walking in People with Parkinson’s Disease: A Pilot and Feasibility Trial

Author:

Mayo Nancy E.ORCID,Mate Kedar K. V.,Fellows Lesley K.ORCID,Morais José A.,Sharp Madeleine,Lafontaine Anne-Louise,Hill Edward Ted,Dawes HelenORCID,Sharkh Ahmed-Abou

Abstract

AbstractBackgroundTechnology is poised to bridge the gap between demand for therapies to improve gait in people with Parkinson’s and available resources. A wearable sensor, Heel2ToeTM, a small device that attaches to the side of the shoe and gives a sound each time the person starts their step with a strong heel strike has been developed and pre-tested by a team at McGill University. The objective of this study was to estimate feasibility and efficacy potential of the Heel2ToeTMsensor in changing walking capacity and gait pattern in people with Parkinson’s.MethodsA pilot study was carried out involving 27 people with Parkinson’s randomized 2:1 to train with the Heel2Toe[TM] sensor and or to train with recommendations from a gait-related workbook.ResultsA total of 21 completed the 3-month evaluation, 14 trained with the Heel2Toe[TM] sensor and 7 trained with the workbook. Thirteen of 14 people in the Heel2Toe group improved over measurement error on the primary outcome, the Six Minute Walk Test, (mean change 66.4 m.) and 0 of the 7 in the Workbook group (mean change –19.4 m.): 4 of 14 in the Heel2Toe group made reliable change and 0 of 7 in the Workbook group. Improvements in walking distance were accompanied by improvements in gait quality. 40% of participants in the intervention group were strongly satisfied with their technology experience and an additional 37% were satisfied.ConclusionsDespite some technological difficulties, feasibility and efficacy potential of the Heel2Toe sensor in improving gait in people with Parkinson’s was supported.Key messages regarding feasibility1)What uncertainties existed regarding the feasibility?The Heel2Toe sensor had been used in clinical research as an assessment tool and in two small proof-of-concept studies with short-term supervised use to detect change and get user feedback on their experience. There was a need to test the sensor for home use and include a control group as perhaps the attention and exercise recommendations could alone have benefit. Therefore, we designed this pilot and feasibility study.2)What are the key feasibility findings?Dropouts from the trial were mainly related to the COVID situation. There were no adverse events in either group. Challenges with using the Heel2Toe sensor related to functionality of the app which were addressed immediately; hardware challenges were addressed in revisions including ease of charging and Bluetooth connectivity; there were challenges for people to use the smart-phone app optimally. Our current revision has removed need for the smartphone. The results also showed that people were able to use the sensor on their own at home with some technical support (average 22 minutes per person) which diminished over time and that, despite technical challenges, the majority of people were satisfied with their experience with the technology, some very much so. There was a strong response in the Heel2Toe group and a near nil response in the control group demonstrating efficacy potential.3)What are the implications of the feasibility findings for the design of the main study?The main study will use the revised version of the Heel2Toe sensor which has eliminated the challenges with connectivity and smartphone skills. Using the 6MWT as the outcome and based on conservative estimates of effect size (0.5), a sample size of 64 per group would be supported. This sample size would also be sufficient for estimating effects on other explanatory and downstream outcomes. Participants would keep the sensor after the study.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3