Gadolinium-based nanoparticles AGuIX and their combination with ionizing radiation trigger AMPK-dependent proinflammatory reprogramming of tumor-associated macrophages

Author:

Muradova Zeinaf,Tannous Désirée,Mostefa-Kara Ali,Cao-Pham Thanh Trang,Lamy Constance,Broutin Sophie,Paci Angelo,Dufort Sandrine,Doussineau Tristan,Lux François,Tillement Olivier,Le Duc Géraldine,Allouch Awatef,Perfettini Jean-Luc

Abstract

AbstractBackgroundTumor-associated macrophages (TAMs) are essential components of the inflammatory microenvironment of tumors and are associated with poor clinical outcomes in the majority of cancers. TAMs mainly exhibit anti-inflammatory functions that promote and support the tissue remodeling, the immune suppression and the tumor growth. Regarding their plasticity, the functional reprogramming of anti-inflammatory TAMs into proinflammatory phenotype recently emerged as a therapeutic opportunity to improve the effectiveness of anticancer treatments such as radiotherapy.ResultsHere we show that gadolinium-based nanoparticles AGuIX alone and in combination with ionizing radiation (IR) induce in a dose-dependent manner, the accumulation of DNA double strand breaks, an Ataxia telangiectasia mutated (ATM)-dependent DNA-damage response, an increased expression of the Interferon regulatory factor 5 (IRF5) and the release of proinflammatory cytokines from targeted macrophages, thus directing their proinflammatory reprogramming. This process is associated with the activating phosphorylation of the Adenosine Monophosphate (AMP) activated protein kinase on threonine 172 (AMPKT172*) and the fragmentation of mitochondria. Furthermore, we demonstrate that the inactivation of AMPK reduces the mitochondrial fragmentation and the proinflammatory reprogramming of macrophages detected in response to AGuIX and their combination with IR. These results reveal that the AMPK-dependent regulation of mitochondrial fragmentation plays a central role during the proinflammatory reprogramming of macrophages. Accordingly, a positive correlation between AMPKT172* and proinflammatory activation of TAMs is detected following IR+AGuIX combination in syngeneic mouse model of colorectal cancer.ConclusionsAltogether, our results identify a novel signaling pathway elicited by AGuIX and their combined treatment with IR, that targets macrophage polarization, skews macrophage functions toward the proinflammatory phenotype and may enhance the effectiveness of radiotherapy.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3