Marine BacteriaAlteromonasspp. Require UDP-glucose-4-epimerase for Aggregation and Production of Sticky Exopolymer

Author:

Robertson Jacob M.,Garza Erin A.,Stubbusch Astrid K.M.,Dupont Christopher L.,Hwa TerenceORCID,Held Noelle A.

Abstract

AbstractThe physiology and ecology of particle-associated marine bacteria are of growing interest, but our knowledge of their aggregation behavior and mechanisms controlling their association with particles remains limited. We have found that a particle-associated isolate,Alteromonassp. ALT199 strain 4B03, and the related type-strainA. macleodii27126 both form large (>500 μm) aggregates while growing in rich medium. A non-clumping variant (NCV) of 4B03 spontaneously arose in the lab, and whole genome sequencing revealed a partial deletion in the gene encoding UDP-glucose-4-epimerase (galEΔ308-324). In 27126, a knock-out ofgalE(ΔgalE::kmr) resulted in a loss of aggregation, mimicking the NCV. Microscopic analysis shows that both 4B03 and 27126 rapidly form large aggregates, whereas their respectivegalEmutants remain primarily as single planktonic cells or clusters of a few cells. Strains 4B03 and 27126 also aggregate chitin particles, but theirgalEmutants do not. Alcian Blue staining shows that 4B03 and 27126 produce large transparent exopolymer particles (TEP), but theirgalEmutants are deficient in this regard. This study demonstrates the capabilities of cell-cell aggregation, aggregation of chitin particles, and production of TEP in strains ofAlteromonas, a widespread particle-associated genus of heterotrophic marine bacteria. A genetic requirement forgalEis evident for each of the above capabilities, expanding the known breadth of requirement for this gene in biofilm-related processes.ImportanceHeterotrophic marine bacteria have a central role in the global carbon cycle. Well-known for releasing CO2by decomposition and respiration, they may also contribute to particulate organic matter (POM) aggregation, which can promote CO2sequestration via the formation marine snow. We find that two members of the prevalent particle-associated genusAlteromonascan form aggregates comprising cells alone or cells and chitin particles, indicating their ability to drive POM aggregation. In line with their multivalent aggregation capability, both strains produce TEP, an excreted polysaccharide central to POM aggregation in the ocean. We demonstrate a genetic requirement forgalEin aggregation and large TEP formation, building our mechanistic understanding of these aggregative capabilities. These findings point toward a role for heterotrophic bacteria in POM aggregation in the ocean and support broader efforts to understand bacterial controls on the global carbon cycle based on microbial activities, community structure, and meta-omic profiling.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3