Estrogen-related differences in antitumor immunity and the gut microbiome contribute to sexual dimorphism of colorectal cancer

Author:

Lattanzi Georgia,Perillo Federica,Díaz-Basabe Angélica,Caridi Bruna,Amoroso Chiara,Baeri Alberto,Cirrincione Elisa,Ghidini Michele,Galassi Barbara,Cassinotti Elisa,Baldari Ludovica,Boni Luigi,Vecchi Maurizio,Caprioli Flavio,Facciotti FedericaORCID,Strati FrancescoORCID

Abstract

AbstractColorectal cancer (CRC) is a multifaceted disease whose development and progression varies depending on tumor location, age of patients, infiltration of immune cells within cancer lesions, and the tumor microenvironment. These pathophysiological characteristics are additionally influenced by sex-related differences. The gut microbiome plays a pivotal role in the initiation and progression of CRC, and shapes anti-tumor immune responses but how the responsiveness of the immune system to the intestinal microbiota may contribute to the sexual dimorphism of CRC is largely unknown. Here, we studied survival, tumor-infiltrating immune cell populations and tumor-associated microbiome of a cohort of n=184 male and female CRC patients and functionally tested the immune system-microbiome interactions inin vivoandin vitromodels of the disease. High-dimensional single-cell flow cytometry showed that female patients are enriched by tumor-infiltrating iNKT cells but depleted by cytotoxic T lymphocytes. The enrichment of oral pathobionts and a reduction of β-glucuronidase activity are distinctive traits characterizing the gut microbiome of women affected by CRC. Functional assays using a collection of human primary iNKT cell lines demonstrated that the gut microbiota of female patients functionally impairs iNKT cell anti-tumor functions interfering with the granzyme-perforin cytotoxic pathway. These results highlight a sex-dependent functional relationship between the gut microbiome, estrogen metabolism, and the decline of cytotoxic T cell responses, contributing to the sexual dimorphism observed in CRC patients with relevant implications for precision medicine and the design of targeted therapeutic approaches addressing sex bias in cancer.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3