Transcriptional and phenotypic heterogeneity underpinning venetoclax resistance in AML

Author:

Mohanty Vakul,Baran Natalia,Huang Yuefan,Ramage Cassandra L,Cooper Laurie M,He Shan,Iqbal Ramiz,Daher May,Tyner Jeffrey W.,Mills Gordon B.,Konopleva Marina,Chen Ken,

Abstract

AbstractThe venetoclax BCL2 inhibitor in combination with hypomethylating agents represents a cornerstone of induction therapy for older AML patients, unfit for intensive chemotherapy. Like other targeted therapies, venetoclax-based therapies suffer from innate and acquired resistance. While several mechanisms of resistance have been identified, the heterogeneity of resistance mechanism across patient populations is poorly understood. Here we utilized integrative analysis of transcriptomic andex-vivodrug response data in AML patients to identify four transcriptionally distinct VEN resistant clusters (VR_C1-4), with distinct phenotypic, genetic and drug response patterns. VR_C1 was characterized by enrichment for differentiated monocytic- and cDC-like blasts, transcriptional activation of PI3K-AKT-mTOR signaling axis, and energy metabolism pathways. They showed sensitivity to mTOR and CDK inhibition. VR_C2 was enriched forNRASmutations and associated with distinctive transcriptional suppression ofHOXexpression. VR_C3 was characterized by enrichment forTP53mutations and higher infiltration by cytotoxic T cells. This cluster showed transcriptional expression of erythroid markers, suggesting tumor cells mimicking erythroid differentiation, activation of JAK-STAT signaling, and sensitivity to JAK inhibition, which in a subset of cases synergized with venetoclax. VR_C4 shared transcriptional similarities with venetoclax-sensitive patients, with modest over-expression of interferon signaling. They were also characterized by high rates ofDNMT3Amutations. Finally, we projected venetoclax-resistance states onto single cells profiled from a patient who relapsed under venetoclax therapy capturing multiple resistance states in the tumor and shifts in their abundance under venetoclax selection, suggesting that single tumors may consist of cells mimicking multiple VR_Cs contributing to intra-tumor heterogeneity. Taken together, our results provide a strategy to evaluate inter- and intra-tumor heterogeneity of venetoclax resistance mechanisms and provide insights into approaches to navigate further management of patients who failed therapy with BCL2 inhibitors.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3