Spontaneous activity of striatal projection neurons supports maturation of striatal inputs to substantia nigra dopaminergic neurons

Author:

Kokinovic BojanaORCID,Seja PatriciaORCID,Donati Angelica,Ryazantseva MariaORCID,de Kerchove d’Exaerde AlbanORCID,Schiffmann Serge N.ORCID,Taira Tomi,Molchanova Svetlana M.ORCID

Abstract

AbstractSpontaneous activity of neurons during early ontogenesis is instrumental for stabilization and refinement of developing neuronal connections. The role of spontaneous activity in synaptic development has been described in detail for cortical-like structures. Yet, very little is known about activity-dependent development of long-range inhibitory projections, such as projections from striatum. Here, we show that striatal projection neurons (SPNs) in dorsal striatum are spontaneously active in P4-P14 mice. Spontaneous activity was detected in both direct-pathway SPNs (dSPNs) and indirect-pathway SPNs (iSPNs). Most of the spontaneously active cells were in striosomes – a chemical compartment in striatum defined by expression of µ-opioid receptor. Higher excitability of both striosomal dSPNs and iSPNs was related to their intrinsic excitability properties (higher action potential half-width and IV slope). Tonic activation of muscarinic M1 receptor maintains the spontaneous activity of striosomal SPNs, the effect being stronger in iSPNs and weaker in dSPNs. To investigate if the neonatal spontaneous activity is needed for the stabilization of SPN long-range projections, we chemogenetically inhibited striosomal SPNs in neonatal animals and studied the efficiency of striatonigral projections in adult animals. Inhibition of striosomal SPNs by chronic CNO administration to P6-14 pups caused a reduction in the functional GABAergic innervation and in the density of gephyrin puncta in dopaminergic neurons of substantia nigra pars compacta of the adult (P52-79) animals. Chronic administration of CNO later in development (P21-29), on the contrary, resulted in higher mIPSC frequency in dopaminergic cells of the adult animals. Thus, the activity-dependent stabilization of striosomal projections has different developmental phases, and the long-term outcome of perturbations in these processes depends on the developmental period when they occur. Taken together, our results demonstrate that spontaneous activity of SPNs is essential for the maturation and stabilization of striatal efferents.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3