ExoS Effector inPseudomonas aeruginosaHyperactive Type III Secretion System Mutant Promotes Enhanced Plasma Membrane Rupture in Neutrophils

Author:

Reuven Arianna D.,Mwaura Bethany W.,Bliska James B.ORCID

Abstract

AbstractPseudomonas aeruginosais an opportunistic bacterial pathogen responsible for a large percentage of airway infections that cause morbidity and mortality in immunocompromised patients, especially those with cystic fibrosis (CF). One importantP. aeruginosavirulence factor is a type III secretion system (T3SS) that translocates effectors into host cells. ExoS is a T3SS effector with ADP ribosyltransferase (ADPRT) activity. The ADPRT activity of ExoS promotesP. aeruginosavirulence by inhibiting phagocytosis and limiting the oxidative burst in neutrophils. TheP. aeruginosaT3SS also translocates flagellin, which can activate the NLRC4 inflammasome, resulting in: 1) gasdermin-D (GSDMD) pores, release of IL-1β and pyroptosis; and 2) histone 3 citrullination (CitH3) and decondensation and expansion of nuclear DNA into the cytosol. However, recent studies with theP. aeruginosalaboratory strain PAO1 indicate that ExoS ADPRT activity inhibits activation of the NLRC4 inflammasome in neutrophils. Here, an ExoS+CF clinical isolate ofP. aeruginosawith a hyperactive T3SS was identified. Variants of the hyperactive T3SS mutant or PAO1 were used to infect neutrophils from C57BL/6 mice or mice engineered to have a CF genotype or a defect in inflammasome assembly. Responses to NLRC4 inflammasome assembly or ExoS ADPRT activity were assayed, results of which were found to be similar for C57BL/6 or CF neutrophils. The hyperactive T3SS mutant had enhanced resistance to neutrophil killing, like previously identified hypervirulentP. aeruginosaisolates. ExoS ADPRT activity in the hyperactive T3SS mutant regulated inflammasome and nuclear DNA decondensation responses like PAO1 but promoted enhanced CitH3 and plasma membrane rupture (PMR). Glycine supplementation inhibited PMR caused by the hyperactive T3SS mutant, suggesting ninjurin-1 is required for this process. These results identify enhanced neutrophil PMR as a pathogenic activity of ExoS ADPRT in a hypervirulentP. aeruginosaisolate.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3