Reprogramming neuroblastoma by diet-enhanced polyamine depletion

Author:

Cherkaoui SarahORCID,Yang Lifeng,McBride MatthewORCID,Turn Christina S.ORCID,Lu WenyunORCID,Eigenmann Caroline,Allen George E.,Panasenko Olesya O.,Zhang LuORCID,Vu Annette,Liu Kangning,Li Yimei,Gandhi Om H.,Surrey Lea,Wierer MichaelORCID,White EileenORCID,Rabinowitz Joshua D.ORCID,Hogarty Michael D.ORCID,Morscher Raphael J.ORCID

Abstract

SummaryNeuroblastoma is a highly lethal childhood tumor derived from differentiation-arrested neural crest cells1,2. Like all cancers, its growth is fueled by metabolites obtained from either circulation or local biosynthesis3,4. Neuroblastomas depend on local polyamine biosynthesis, with the inhibitor difluoromethylornithine showing clinical activity5. Here we show that such inhibition can be augmented by dietary restriction of upstream amino acid substrates, leading to disruption of oncogenic protein translation, tumor differentiation, and profound survival gains in the TH-MYCNmouse model. Specifically, an arginine/proline-free diet decreases the polyamine precursor ornithine and augments tumor polyamine depletion by difluoromethylornithine. This polyamine depletion causes ribosome stalling, unexpectedly specifically at adenosine-ending codons. Such codons are selectively enriched in cell cycle genes and low in neuronal differentiation genes. Thus, impaired translation of these codons, induced by the diet-drug combination, favors a pro-differentiation proteome. These results suggest that the genes of specific cellular programs have evolved hallmark codon usage preferences that enable coherent translational rewiring in response to metabolic stresses, and that this process can be targeted to activate differentiation of pediatric cancers.Graphical AbstractHighlights- Extra-tumoral conversion of arginine feeds tumor ornithine via uptake from circulation in MYCN-neuroblastoma.- A proline and arginine free diet enhances pharmacological polyamine depletion via reduced ornithine substrate availability.- Polyamine depletion disrupts oncogenic translation to induce a pro-differentiation proteome causing neuroblast differentiation and prolonged survival in the TH-MYCN mouse model.- Genes of specific cellular programs have evolved codon usage preferences that enable coherent translational rewiring in response to metabolic stress, such as polyamine depletion.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3