Photo-crosslinking hERG channels causes a U.V.-driven, state-dependent disruption of kinetics and voltage dependence of activation

Author:

Codding Sara J.ORCID,Trudeau Matthew C.ORCID

Abstract

AbstractHuman ether-à-go-go related gene (hERG) voltage-activated potassium channels are critical for cardiac excitability. Characteristic slow closing (deactivation) in hERG is regulated by direct interaction between the N-terminal Per-Arnt-Sim (PAS) domain and the C-terminal cyclic nucleotide binding homology domain (CNBHD). We aim to understand how the PAS domain that is distal to the pore rearranges during gating to allosterically regulate the channel pore (and ion flux). To achieve this, we utilized the non-canonical amino acid 4-Benzoyl-L-phenylalanine (BZF) which is a photo-activatable cross-linkable probe, that when irradiated with ultraviolet (U.V.) light forms a double radical capable of forming covalent cross-links with C-H bond-containing groups, enabling selective and potent U.V.-driven photoinactivation of ion channel dynamics. Here we incorporate BZF directly into the hERG potassium channel PAS domain at three locations (G47, F48, and E50) using TAG codon suppression technology. hERG channels with BZF incorporated into the PAS domain (hERG-BZF) showed a significant change in the biophysical properties of the channel. hERG-G47BZF activated slowly when irradiated in the closed state (-100mV) but deactivated quickly when irradiated in both the open (0mV) and closed state. hERG-F48BZF channels showed a state independent and U.V. dose-dependent change in channel activation (slowing down) and channel deactivation (speeding up), as well as a marked change (right-shift) in the voltage-dependence of conductance. When irradiated at -100 mV hERG-E50BZF showed a state dependent and U.V. dose-dependent change in a channel activation (slowing down) and deactivation (speeding up) of channel deactivation, as well as a marked change (right-shift) in the voltage-dependence of conductance that occurred only when the channel was irradiated in the closed state (-100mV). This approach demonstrated that direct photo-crosslinking of the PAS domain in hERG channels causes a measurable change in biophysical parameters and more broadly stabilized the closed state of the channel. We propose that altered channel gating is as a direct result of reduced dynamic motions in the PAS domain of hERG due to photo-chemical crosslinking.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3