Stronger evidence for relaxed selection than adaptive evolution in high-elevation animal mtDNA

Author:

Iverson Erik N. K.ORCID,Criswell Abby,Havird Justin C.

Abstract

AbstractMitochondrial (mt) genes are the subject of many adaptive hypotheses due to the key role of mitochondria in energy production and metabolism. One widespread adaptive hypothesis is that selection imposed by life at high elevation leads to the rapid fixation of beneficial alleles in mtDNA, reflected in the increased rates of mtDNA evolution documented in many high-elevation species. However, the assumption that fast mtDNA evolution is caused by positive, rather than relaxed purifying selection has rarely been tested. Here, we calculated thedN/dSratio, a metric of nonsynonymous substitution bias, and explicitly tested for relaxed selection in the mtDNA of over 700 species of terrestrial vertebrates, freshwater fishes, and arthropods, with information on elevation and latitudinal range limits, range sizes, and body sizes. We confirmed that mitochondrial genomes of high-elevation taxa have slightly higherdN/dSratios compared to low-elevation relatives. High-elevation species tend to have smaller ranges, which predict higherdN/dSratios and more relaxed selection across species and clades, while absolute elevation and latitude do not predict higherdN/dS. We also find a positive relationship between body mass anddN/dS, supporting a role for small effective population size leading to relaxed selection. We conclude that higher mtdN/dSamong high-elevation species is more likely to reflect relaxed selection due to smaller ranges and reduced effective population size than adaptation to the environment. Our results highlight the importance of rigorously testing adaptive stories against non-adaptive alternative hypotheses, especially in mt genomes.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3