Investments in photoreceptors compete with investments in optics to determine eye design

Author:

Heras Francisco J HORCID,Laughlin Simon BORCID

Abstract

AbstractBecause an animal invests in an eye’s optics and photoreceptor array to meet behavioural needs at minimum cost, optics and photoreceptors compete for resources to maximise eye performance. This competition has not previously been investigated. Its outcome depends on the relative costs and benefits of investing space, materials and energy in optics and photoreceptors. We introduce a measure of cost, specific volume in µm3sr1, which relates to performance via optical, physiological and geometrical constraints. We model apposition compound eyes and simple (camera type) eyes to calculate the performance surface across the morphospace of eyes of given type and total cost. This surface identifies the allocation of resources that maximises efficiency and shows how efficiency reduces as eye morphology departs from optimum. Using published data, we calculate specific volumes to estimate the investments in optics and photoreceptors that insects make, and compare these with our models. We find that efficient allocation can explain three robust trends: fast flying diurnal insects allocate>50% of eye volume to photoreceptor arrays, their photoreceptors’ photosensitive waveguides (rhabdomeres, rhabdoms) are much longer than simple eyes’, and length increases systematically with spatial resolution. We conclude that photoreceptor costs often equal or exceed optical costs, therefore competition between optics and photoreceptors for resources is a major factor in eye design, and matching investments in optics and photoreceptors to maximise efficiency is a design principle. Our methodology can be developed to view the adaptive radiation of eyes through a cost:benefit lens.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3