Life stage impact on the human skin ecosystem: lipids and the microbial community

Author:

Pagac Martin P.,Davient Bala,Lam Hilbert Yuen In,Ravikrishnan Aarthi,Chua Wee Ling Esther,Muralidharan Sneha,Sridharan Aishwarya,Irudayaswamy Antony S.,Srinivas Ramasamy,Wearne Stephen,Mohamed Naim Ahmad Nazri,Ho Xin Pei Eliza,Ng H. Q. Amanda,Kwah Junmei Samantha,Png Eileen,Bendt Anne K.,Wenk Markus R.,Torta Federico,Nagarajan Niranjan,Common John,Seng Chong Yap,Tham Elizabeth Huiwen,Shek Lynette Pei-Chi,Loo Evelyn Xiu Ling,Chambers John,Yew Yik Weng,Loh Marie,Dawson Thomas L.

Abstract

AbstractWhile research into gut-microbe interactions is common and advanced, with multiple defined impacts on human health, studies exploring the significance of skin-microbe interactions remain underrepresented. Skin is the largest human organ, has a vast surface area, and is inhabited by a plethora of microorganisms which metabolise sebaceous lipids. Sebaceous free fatty acids are metabolized into bioactive lipid mediators with immune-modulatory properties by skin-resident microbes, includingMalassezia. Intriguingly, many of the same lipid mediators are also found on human skin, implying these compounds may have microbial or mixed microbial/human origin. To support this hypothesis, we isolated lipids and microbial DNA from the skin of prepubescent, adult, pre- and post-menopausal volunteers and performed correlational analyses using skin lipidomics and metagenomics to compare lipid mediator profiles and microbiome compositions on skin with either low or high sebaceous gland activity. We found that specific microbial taxonomies were positively and negatively correlated with skin lipid mediator species with high statistical significance. 2Din vitroco-cultures withMalasseziaand keratinocytes also directly linked the production of specific lipid mediators, detected on healthy human skin, to secretion of immuno-stimulatory cytokines. Together, these findings further support the hypothesis that microbial-derived skin lipid mediators influence healthy skin homeostasis and skin disease development and progression, thereby spotlighting the relevance of the skin microbiome’s footprint on human health.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3