Protein sequence landscapes are not so simple: on reference-free versus reference-based inference

Author:

Dupic ThomasORCID,Phillips Angela M.,Desai Michael M.ORCID

Abstract

In a recent preprint, Park, Metzger, and Thornton reanalyze 20 empirical protein sequence-function landscapes using a “reference-free analysis” (RFA) method they recently developed. They argue that these empirical landscapes are simpler and less epistatic than earlier work suggested, and attribute the difference to limitations of the methods used in the original analyses of these landscapes, which they claim are more sensitive to measurement noise, missing data, and other artifacts. Here, we show that these claims are incorrect. Instead, we find that the RFA method introduced by Park et al. is exactly equivalent to the reference-based least-squares methods used in the original analysis of many of these empirical landscapes (and also equivalent to a Hadamard-based approach they implement). Because the reanalyzed and original landscapes are in fact identical, the different conclusions drawn by Park et al. instead reflect different interpretations of the parameters describing the inferred landscapes; we argue that these do not support the conclusion that epistasis plays only a small role in protein sequence-function landscapes.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3