Genome-Wide Profiling of Soybean WRINKLED1 Transcription Factor Binding Sites Provides Insight into Seed Storage Lipid Biosynthesis

Author:

Jo LeonardoORCID,Pelletier Julie M.,Goldberg Robert B.,Harada John J.

Abstract

AbstractUnderstanding the regulatory mechanisms controlling storage lipid accumulation will inform strategies to enhance seed oil quality and quantity in crop plants. The WRINKLED1 transcription factor (WRI1 TF) is a central regulator of lipid biosynthesis. We characterized the genome-wide binding profile of soybean (Gm)WRI1 and show that the TF directly regulates genes encoding numerous enzymes and proteins in the fatty acid and triacylglycerol biosynthetic pathways. GmWRI1 binds primarily to regions downstream of target gene transcription start sites. We showed that GmWRI1 bound regions are enriched for the canonical WRI1 DNA binding element, the AW Box (CNTNGNNNNNNNCG), and another DNA motif, the CNC Box (CNCCNCC). Functional assays showed that both DNA elements mediate transcriptional activation by GmWRI1. We also show that GmWRI1 works in concert with other TFs to establish a regulatory state that promotes fatty acid and triacylglycerol biosynthesis. In particular, comparison of genes targeted directly by GmWRI1 and by GmLEC1, a central regulator of the maturation phase of seed development, reveals that the two TFs act in a positive feedback subcircuit to control fatty acid and triacylglycerol biosynthesis. Together, our results provide new insights into the genetic circuitry in which GmWRI1 participates to regulate storage lipid accumulation during seed development.Significance StatementWe report the genome-wide profiling of DNA sequences bound by and the genes directly- regulated by soybean WRINKLED1, a central regulator of storage lipid accumulation in oilseed plants. The information offers new insights into the mechanisms by which WRINKLED1 regulates genes encoding lipid biosynthetic enzymes and establishes a regulatory environment that promotes oil accumulation, and it may aid in the design of strategy to alter storage lipid accumulation in oilseeds.

Publisher

Cold Spring Harbor Laboratory

Reference56 articles.

1. High-value oils from plants

2. OECD-FAO, OECD-FAO Agricultural Outlook 2022-2031.

3. Biochemical pathways in seed oil synthesis

4. Seeds as oil factories;Plant Reprod,2018

5. Recent advances in the biosynthesis of plant fatty acids;Bba-Lipid Lipid Met,1996

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3