Developmental order, fibre caliber, and vascularization predict tract-wise declines: Testing retrogenesis and physiological predictions in white matter aging

Author:

Robinson Tyler D.,Chad Jordan A.,Sun Yutong L.,Chang Paul T. H.,Chen J. Jean

Abstract

ABSTRACTTo understand the consistently observed spatial distribution of white-matter (WM) aging, developmentally driven theories of retrogenesis have gained traction, positing that the order WM development predicts declines. Regions that develop first are often expected to deteriorate the last, i.e. “last-in-first-out”. Alternatively, regions which develop most rapidly may also decline most rapidly in aging, or the “gains-predict-loss” model. The validity of such theories remains uncertain, in part due to lack of clarity on the definition of developmental order. Our recent findings also suggest that WM degeneration may vary by physiological parameters such as perfusion. Furthermore, it is informative to link perfusion to fibre metabolic need, which varies with fibre size. Here we address the question of whether WM degeneration is determined by development trajectory or physiological state across both microstructural and perfusion measures using data drawn from the Human Connectome Project in Aging (HCP-A). Our results indicate that developmental order of tract myelination provides the strongest support for the retrogenesis hypothesis, with the last to complete myelination the first to decline. Moreover, higher mean axon diameter and lower macrovascular density are associated with lower degrees of WM degeneration across measures. Tract perfusion, in turn also tends to be higher and the arterial transit time longer for tracts that appear first. These findings suggest that WM degeneration in different tracts may be governed by their developmental trajectories and physiology, and ultimately influenced by each tract’s metabolic demand.

Publisher

Cold Spring Harbor Laboratory

Reference45 articles.

1. Age-related changes in fibre composition of the human corpus callosum: sex differences;Neuroreport,1996

2. Adult age differences in subcortical myelin content are consistent with protracted myelination and unrelated to diffusion tensor imaging indices

3. Sexual dimorphism in the cerebrovascular network: Brain MRI shows lower arterial density in women;Journal of Neuroimaging: Official Journal of the American Society of Neuroimaging,2022

4. Reduced blood flow in normal white matter predicts development of leukoaraiosis;Journal of Cerebral Blood Flow and Metabolism: Official Journal of the International Society of Cerebral Blood Flow and Metabolism,2015

5. Human cerebral white-matter vasculature imaged using the blood-Pool contrast agent ferumoxytol: bundle-specific vessels and vascular density;Proc Intl Soc Mag Reson Med,2020

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3