Inferring strain-level mutational drivers of phage-bacteria interaction phenotypes

Author:

Lucia-Sanz AdrianaORCID,Peng ShengyunORCID,Yin (Joey) Leung ChungORCID,Gupta AnimeshORCID,Meyer Justin R.ORCID,Weitz Joshua S.ORCID

Abstract

AbstractThe enormous diversity of bacteriophages and their bacterial hosts presents a significant challenge to predict which phages infect a focal set of bacteria. Infection is largely determined by complementary -and largely uncharacterized-genetics of adsorption, injection, and cell take-over. Here we present a machine learning (ML) approach to predict phage-bacteria interactions trained on genome sequences of and phenotypic interactions amongst 51Escherichia colistrains and 45 phage λ strains that coevolved in laboratory conditions for 37 days. Leveraging multiple inference strategies and withouta prioriknowledge of driver mutations, this framework predicts both who infects whom and the quantitative levels of infections across a suite of 2,295 potential interactions. The most effective ML approach inferred interaction phenotypes from independent contributions from phage and bacteria mutations, predicting phage host range with 86% mean classification accuracy while reducing the relative error in the estimated strength of the infection phenotype by 40%. Further, transparent feature selection in the predictive model revealed 18 of 176 phage λ and 6 of 18E. colimutations that have a significant influence on the outcome of phage-bacteria interactions, corroborating sites previously known to affect phage λ infections, as well as identifying mutations in genes of unknown function not previously shown to influence bacterial resistance. While the genetic variation studied was limited to a focal, coevolved phage-bacteria system, the method’s success at recapitulating strain-level infection outcomes provides a path forward towards developing strategies for inferring interactions in non-model systems, including those of therapeutic significance.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3