Sustained EEG responses to rapidly unfolding stochastic sounds reflect precision tracking

Author:

Zhao SijiaORCID,Skerritt-Davis BenjaminORCID,Elhilali MounyaORCID,Dick FredericORCID,Chait MariaORCID

Abstract

AbstractThe brain is increasingly viewed as a statistical learning machine, where our sensations and decisions arise from the intricate interplay between bottom-up sensory signals and constantly changing expectations regarding the surrounding world. Which statistics does the brain track while monitoring the rapid progression of sensory information?Here, by combining EEG (three experiments N≥22 each) and computational modelling, we examined how the brain processes rapid and stochastic sound sequences that simulate key aspects of dynamic sensory environments. Passively listening participants were exposed to structured tone-pip arrangements that contained transitions between a range of stochastic patterns. Predictions were guided by a Bayesian predictive inference model. We demonstrate that listeners automatically track the statistics of unfolding sounds, even when these are irrelevant to behaviour. Transitions between sequence patterns drove an increase of the sustained EEG response. This was observed to a range of distributional statistics, and even in situations where behavioural detection of these transitions was at floor. These observations suggest that the modulation of the EEG sustained response reflects a universal process of belief updating within the brain. By establishing a connection between the outputs of the computational model and the observed brain responses, we demonstrate that the dynamics of these transition-related responses align with the tracking of ‘precision’ – the confidence or reliability assigned to a predicted sensory signal - shedding light on the intricate interplay between the brain’s statistical tracking mechanisms and its response dynamics.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3