Lipid nanoparticle composition for adjuvant formulation modulates disease after influenza virus infection in QIV vaccinated mice

Author:

Jangra Sonia,Lamoot Alexander,Singh Gagandeep,Laghlali Gabriel,Chen Yong,Yz Tingting,García-Sastre Adolfo,De Geest Bruno G.,Schotsaert MichaelORCID

Abstract

AbstractAdjuvants can enhance vaccine effectiveness of currently licensed influenza vaccines. We tested influenza vaccination in a mouse model with two adjuvants: Sendai virus derived defective interfering (SDI) RNA, a RIG-I agonist, and an amphiphilic imidazoquinoline (IMDQ-PEG-Chol), TLR7/8 adjuvant. The negatively charged SDI RNA was formulated into lipid nanoparticles (LNPs) facilitating the direct delivery of a RIG-I agonist to the cytosol. We have previously tested SDI and IMDQ-PEG-Chol as standalone and combination adjuvants for influenza and SARS-CoV-2 vaccines. Here we tested two different ionizable lipids, K-Ac7-Dsa and S-Ac7-Dog, for LNP formulations. The adjuvanticity of IMDQ-PEG-Chol with and without empty or SDI-loaded LNPs was validated in a licensed vaccine setting (quadrivalent influenza vaccine or QIV) against H1N1 influenza virus, showing robust induction of antibody titres and T cell responses. Depending on the adjuvant combination and LNP lipid composition (K-Ac7-Dsa or S-Ac7-Dog lipids), humoral and cellular vaccine responses could be tailored towards type 1 or type 2 host responses with specific cytokine profiles that correlated with protection during viral infection. The extent of protection conferred by different vaccine/LNP/adjuvant combinations was examined against challenge with the vaccine-matching strain of H1N1 influenza A virus. Groups that received either LNP formulated with SDI, IMDQ-PEG-Chol or both showed very low levels of viral replication in their lungs at five days post virus infection. LNP ionizable lipid composition as well as loading (empty versus SDI) also skewed host responses to infection, as reflected in the cytokine and chemokine levels in lungs of vaccinated animals upon infection. These studies show the potential of LNPs as adjuvant delivery vehicles for licensed vaccines and illustrate the importance of LNP composition for subsequent host responses to infection, an important point of consideration for vaccine safety.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3