Spatio-temporal analysis of Vaccinia virus infection and host response dynamics using single-cell transcriptomics and proteomics

Author:

Matía AlejandroORCID,McCarthy FrankORCID,Woosley HunterORCID,Turon-Lagot VincentORCID,Platzer Sebastian W.ORCID,Liu JonathanORCID,Lorenzo María M.ORCID,Borja MichaelORCID,Shetty KavyaORCID,Winkler JulianeORCID,Elias Joshua E.ORCID,Blasco RafaelORCID,Arias CarolinaORCID,Hein Marco Y.ORCID

Abstract

ABSTRACTPoxviruses are a large group of DNA viruses with exclusively cytoplasmic life cycles and complex gene expression programs. A number of systems-level studies have analyzed bulk transcriptome and proteome changes upon poxvirus infection, but the cell-to-cell heterogeneity of the transcriptomic response, and the subcellular resolution of proteomic changes have remained unexplored.Here, we measured single-cell transcriptomes of Vaccinia virus-infected populations of HeLa cells and immortalized human fibroblasts, resolving the cell-to-cell heterogeneity of infection dynamics and host responses within those cell populations. We further integrated our transcriptomic data with changes in the levels and subcellular localization of the host and viral proteome throughout the course of Vaccinia virus infection.Our findings from single-cell RNA sequencing indicate conserved transcriptome changes independent of the cellular context, including widespread host shutoff, heightened expression of cellular transcripts implicated in stress responses, the rapid accumulation of viral transcripts, and the robust activation of antiviral pathways in bystander cells. While most host factors were co-regulated at the RNA and protein level, we identified a subset of factors where transcript and protein levels were discordant in infected cells; predominantly factors involved in transcriptional and post-transcriptional mRNA regulation. In addition, we detected the relocalization of several host proteins such as TENT4A, NLRC5, and TRIM5, to different cellular compartments in infected cells. Collectively, our comprehensive data provide spatial and temporal resolution of the cellular and viral transcriptomes and proteomes and offer a robust foundation for in-depth exploration of virus-host interactions in poxvirus-infected cells.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3