Temporal information of subsecond sensory stimuli in primary visual cortex is encoded via high dimensional population vectors

Author:

Post Sam,Mol William,Rahmatullah Noorhan,Goel Anubhuti

Abstract

ABSTRACTWhether in music, language, baking, or memory, our experience of the world is fundamentally linked to time. However, it is unclear how temporal information is encoded, particularly in the range of milliseconds to seconds. Temporal processing at this scale is critical to prediction and survival, such as in a prey anticipating not only where a charging predator will go but alsowhenthe predator will arrive at that location. Several models of timing have been proposed that suggest that either time is encoded intrinsically in the dynamics of a network or that time is encoded by mechanisms that are explicitly dedicated to temporal processing. To determine how temporal information is encoded, we recorded neural activity in primary visual cortex (V1) as mice (male and female) performed a goal directed sensory discrimination task, in which patterns of subsecond stimuli differed only in their temporal profiles. We found that temporal information was encoded in the changing population vector of the network and that the space between these vectors was maximized in learned sessions. Our results suggest that temporal information in the subsecond range is encoded intrinsically and does not rely upon specialized timing mechanisms.SIGNIFICANCE STATEMENTOur experience of the world is fundamentally linked to time, but it is unclear how temporal information is encoded, particularly in the range of milliseconds to seconds. Using a sensory discrimination task in which patterns of subsecond stimuli differed in their temporal profiles, we found that primary visual cortex encodes temporal information via the changing population vector of the network. As temporal processing via population encoding has been shown to rely on inhibitory activity in computational models, our results may provide insight into temporal processing deficits in disorders such as autism spectrum disorder in which there is inhibitory-excitatory imbalance. Furthermore, our results may underlie processing of higher-order sensory stimuli, such as language, that are characterized by complex temporal sequences.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3