Comparative analysis of kidney transplantation modeled using precision-cut kidney slices and kidney transplantation in pigs

Author:

Moor Matthias B.ORCID,Nordström Johan,Burmakin MikhailORCID,Raki Melinda,Al-Saad SamerORCID,Nowak GregORCID,Wennberg LarsORCID,Patrakka JaakkoORCID,Olauson HannesORCID

Abstract

AbstractKidney transplants are at risk for so far unavoidable ischemia-reperfusion injury. Several experimental kidney transplantation models are available to study this injury, but all have their own limitations. Here, we describe precision-cut kidney slices (PCKS) as a novel model of kidney ischemia-reperfusion injury in comparison with pig and human kidney transplantation.Following bilateral nephrectomy in pigs, we applied warm ischemia (1h), cold ischemia (20h) and a reperfusion period (4h) to one whole kidney undergoing transplantation to a recipient pig and, in parallel, established PCKS undergoing ischemia and modeled reperfusion. Histopathological assessment revealed the presence of some but not all morphological features of tubular injury in PCKS as seen in pig kidney transplantation. RNAseq demonstrated that the majority of changes occurred after reperfusion only, with a partial overlap between PCKS and kidney transplantation, with some differences in transcriptional response attributable to systemic inflammatory responses and immune cell migration. Comparison of PCKS and pig kidney transplantation with RNAseq data from human kidney biopsies by gene set enrichment analysis revealed that both PCKS and pig kidney transplantation reproduced the post-reperfusion pattern of human kidney transplantation. In contrast, only post-cold ischemia PCKS and pig kidney partially resembled the gene set of human acute kidney injury.Overall, the present study established that a PCKS protocol can model kidney transplantation and its reperfusion-related damage on a histological and a transcriptomic level. PCKS may thus expand the toolbox for developing novel therapeutic strategies against ischemia-reperfusion injury.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3