Numerical modeling of senile plaque development under conditions of limited diffusivity of amyloid-β monomers

Author:

Kuznetsov Andrey V.ORCID

Abstract

AbstractThis paper introduces a method to simulate the progression of senile plaques, focusing on scenarios where concentrations of amyloid beta (Aβ) monomers and aggregates vary between neurons. Extracellular variations in these concentrations may arise from the limited diffusivity of Aβ monomers and a high rate of Aβ monomer production at lipid membranes, requiring a substantial concentration gradient for diffusion-driven transport of Aβ monomers. The dimensionless formulation of the model is presented, highlighting four key dimensionless parameters governing the solutions for Aβ monomer and aggregate concentrations, as well as the radius of a growing Aβ plaque within the control volume. These parameters include the dimensionless diffusivity of Aβ monomers, the dimensionless rate of Aβ monomer production, and the dimensionless half-lives of Aβ monomers and aggregates. An approximate solution is derived for the scenario involving large diffusivity of Aβ monomers and dysfunctional protein degradation machinery, resulting in infinitely long half-lives for Aβ monomers and aggregates. In this scenario, the concentrations of Aβ aggregates and the radius of the Aβ plaque depend solely on a single dimensionless parameter that characterizes the rate of Aβ monomer production. According to the approximate solution, the concentration of Aβ aggregates is linearly dependent on the rate of monomer production, and the radius of an Aβ plaque is directly proportional to the cube root of the rate of monomer production. However, when departing from the conditions of the approximate solution (e.g., finite half-lives), the concentrations of Aβ monomers and aggregates, along with the plaque radius, exhibit complex dependencies on all four dimensionless parameters. For instance, under physiological half-life conditions, the plaque radius reaches a maximum value and stabilizes thereafter.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3