Late-season surveys to document seed rain potential of Palmer amaranth (Amaranthus palmeri) and waterhemp (Amaranthus tuberculatus) in Texas cotton

Author:

Werner Kaisa M.,Sarangi Debalin,Nolte Scott A.,Dotray Peter A.,Bagavathiannan Muthukumar V.ORCID

Abstract

AbstractDespite the best weed control efforts, weed escapes are often present in large production fields prior to harvest, contributing to seed rain and species persistence. Late-season surveys were conducted in cotton (Gossypium hirsutum L.) fields in Texas in 2016 and 2017 to identify common weed species present as escapes and estimate seed rain potential of Palmer amaranth (Amaranthus palmeri S. Watson) and waterhemp [A. tuberculatus (Moq.) J.D. Sauer], two troublesome weed species with high fecundity. A total of 400 cotton fields across four major cotton-producing regions in Texas [High Plains (HP), Gulf Coast (GC), Central Texas, and Blacklands] were surveyed. Results have revealed that A. palmeri, Texas millet [Urochloa texana (Buckley) R. Webster], A. tuberculatus, ragweed parthenium (Parthenium hysterophorus L.), and barnyardgrass [Echinochloa crus-galli (L.) P. Beauv.] were the top five weed escapes present in cotton fields. Amaranthus palmeri was the most prevalent weed in the HP and Lower GC regions, whereas A. tuberculatus escapes were predominantly observed in the Upper GC and Blacklands regions. On average, 9.4% of an individual field was infested with A. palmeri escapes in the Lower GC region; however, it ranged between 5.1 and 8.1% in the HP region. Average A. palmeri density ranged from 405 (Central Texas) to 3,543 plants ha−1 (Lower GC). The greatest seed rain potential by A. palmeri escapes was observed in the upper HP region (13.9 million seeds ha−1), whereas the seed rain potential of A. tuberculatus escapes was the greatest in the Blacklands (12.9 million seeds ha−1) and the upper GC regions (9.8 million seeds ha−1). Results indicated that seed rain from late-season A. palmeri and A. tuberculatus escapes are significant in Texas cotton, and effective management of these escapes is imperative for minimizing seedbank inputs and impacting species persistence.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3