A biomechanical model for the relation between bite force and mandibular opening angle in arthropods

Author:

Püffel FrederikORCID,Johnston Richard,Labonte DavidORCID

Abstract

Bite forces play a key role in animal ecology: they affect mating behaviour, fighting success, and the ability to feed. Although feeding habits of arthropods have an enormous ecological and economical impact, we lack fundamental knowledge on how the morphology and physiology of their bite apparatus controls bite performance and its variation with mandible gape. To address this gap, we derived a comprehensive biomechanical model that characterises the relationship between bite force and mandibular opening angle from first principles. We validate the model by comparing its geometric predictions with morphological measurements on CT-scans ofAtta cephalotesleaf-cutter ants. We then demonstrate its deductive and inductive power with three exemplary use cases: First, we extract the physiological properties of the leaf-cutter ant mandible closer muscle fromin-vivobite force measurements. Second, we show that leaf-cutter ants are extremely specialised for biting: they generate maximum bite forces equivalent to about 2600 times their body weight. Third, we discuss the relative importance of morphology and physiology in determining the magnitude and variation of bite force. We hope that our work will facilitate future comparative studies on the insect bite apparatus, and advance our knowledge of the behaviour, ecology and evolution of arthropods.

Publisher

Cold Spring Harbor Laboratory

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3