Food quantity does not compensate for poor food quality in fitness of juvenile Chinook salmon (Oncorhynchus tshawytscha)

Author:

Garzke JessicaORCID,Forster IanORCID,Graham Caroline,Costalago DavidORCID,Hunt Brian P.V.ORCID

Abstract

AbstractChanges in marine prey availability and nutritional quality can have effects on juvenile salmon fitness (i.e., growth, condition, and mortality) during the early marine phase. There is limited knowledge of the interplay between prey availability and prey quality, and the importance of food quality under food satiated conditions. Here, a four-phase and 11-week long feeding experiment measured the effects of nutritional quality (fatty acid composition and ratios) juvenile Chinook salmon (Oncorhynchus tshawytscha) fitness. Experimental diets were chosen based on the ratio of two essential fatty acids, docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA). We tested the effects of three diets with different DHA/EPA ratios representing different naturally occurring prey species (DHA/EPA: Artemia = 0.05; Aquafeed = 0.79; Krill (Euphasia pacifica) = 0.99). The four experimental phases were: 1 - acclimation; 2 - weaning onto treatment diets; 3 - experimental feeding phase; 4 - Artemia-reared fish switching to commercial aquafeed. Fish were sampled weekly for all treatments and replicates, and growth rates, condition (RNA/DNA and Fulton K), fatty acid composition and mortality rates were measured. Fatty acids were incorporated into salmon muscle at varying rates but on average reflected dietary concentrations. High dietary concentrations of DHA, EPA and high DHA/EPA ratios resulted in increased fish growth and condition. In contrast, low concentrations of DHA and EPA and low DHA/EPA ratios in the diets were not compensated for by increased food quantity. This result highlights the importance of food quality being considered when assessing fish response to changing ocean conditions.HighlightsHigh concentrations of DHA, EPA and DHA/EPA ratios resulted in increased fish growth and conditionHigher food intake does not compensate for low DHA, EPA and DHA/EPAChanges in zooplankton species composition as food source affect juvenile Chinook conditionClimate change effects on zooplankton species composition can affect juvenile Chinook condition

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3