Steady state visual evoked potentials reveal a signature of the pitch-size crossmodal association in visual cortex

Author:

Sciortino Placido,Kayser ChristophORCID

Abstract

AbstractCrossmodal correspondences describe our tendency to associate sensory features from different modalities with each other, such as the pitch of a sound with the size of a visual object. While such crossmodal correspondences (or associations) are described in many behavioural studies their neurophysiological correlates remain unclear. Under the current working model of multisensory perception both a low- and a high-level account seem plausible. That is, the neurophysiological processes shaping these associations could commence in low-level sensory regions, or may predominantly emerge in high-level association regions of semantic and object identification networks. We exploited steady-state visual evoked potentials (SSVEP) to directly probe this question, focusing on the associations between pitch and the visual features of size, hue or chromatic saturation. We found that SSVEPs over occipital regions are sensitive to the congruency between pitch and size, and a source analysis pointed to an origin around primary visual cortices. We speculate that this signature of the pitch-size association in low-level visual cortices reflects the successful pairing of congruent visual and acoustic object properties and may contribute to establishing causal relations between multisensory objects.

Publisher

Cold Spring Harbor Laboratory

Reference105 articles.

1. The 6Hz fundamental stimulation frequency rate for individual face discrimination in the right occipito-temporal cortex

2. Binocular rivalry between emotional and neutral stimuli: A validation using fear conditioning and EEG;Int. J. Psychophysiol., Neurobiology of Fear and Disgust,2005

3. Implicit associations between individual properties of color and sound;Atten. Percept. Psychophys.,2019

4. Cortical Mechanisms for Trans-Saccadic Memory of Multiple Objects

5. Object processing in the absence of attention

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3