METTL17 is an Fe-S cluster checkpoint for mitochondrial translation

Author:

Ast Tslil,Itoh Yuzuru,Sadre Shayan,McCoy Jason G.,Namkoong Gil,Chicherin Ivan,Joshi Pallavi R.,Kamenski Piotr,Suess Daniel L. M.,Amunts Alexey,Mootha Vamsi K.

Abstract

AbstractFriedreich’s ataxia (FA) is the most common monogenic mitochondrial disease. FA is caused by a depletion of the mitochondrial protein frataxin (FXN), an iron-sulfur (Fe-S) cluster biogenesis factor. To better understand the cellular consequences of FA, we performed quantitative proteome profiling of human cells depleted for FXN. Nearly every known Fe-S cluster-containing protein was depleted in the absence of FXN, indicating that as a rule, cluster binding confers stability to Fe-S proteins. Proteomic and genetic interaction mapping identified impaired mitochondrial translation downstream of FXN loss, and specifically highlighted the methyltransferase-like protein METTL17 as a candidate effector. Using comparative sequence analysis, mutagenesis, biochemistry and cryogenic electron microscopy we show that METTL17 binds to the mitoribosomal small subunit during late assembly and harbors a previously unrecognized [Fe4S4]2+cluster required for its stability on the mitoribosome. Notably, METTL17 overexpression rescued the mitochondrial translation and bioenergetic defects, but not the cellular growth, of FXN null cells. Our data suggest that METTL17 serves as an Fe-S cluster checkpoint: promoting the translation and assembly of Fe-S cluster rich OXPHOS proteins only when Fe-S cluster levels are replete.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3