Altered structural connectome of children with Auditory Processing Disorder: A diffusion MRI study

Author:

Alvand AshkanORCID,Kuruvilla-Mathew AbinORCID,Roberts Reece P.ORCID,Pedersen MangorORCID,Kirk Ian J.ORCID,Purdy Suzanne C.ORCID

Abstract

ABSTRACTAuditory processing disorder (APD) is a listening impairment that some school-aged children may experience as difficulty understanding speech in background noise despite having normal peripheral hearing. Recent resting-state functional magnetic resonance imaging (MRI) has revealed an alteration in regional, but not global, functional brain topology in children with APD. However, little is known about the brain structural organization in APD. We used diffusion MRI data to investigate the structural white matter connectome of 58 children from 8 to 14 years old diagnosed with APD (n=29) and children without hearing complaints (healthy controls, HC; n=29). We investigated the rich-club organization and structural connection differences between APD and HC groups using the network science approach. The APD group showed neither edge-based connectivity differences nor any differences in rich-club organization and connectivity strength (i.e., rich, feeder, local connections) compared to HCs. However, at the regional network level, we observed increased average path length (APL) and betweenness centrality in the right inferior parietal lobule and inferior precentral gyrus, respectively, in children with APD. HCs demonstrated a positive association between APL in the left orbital gyrus and the listening-in-spatialized-noise-sentences task, a measure of auditory processing ability. This correlation was not observed in the APD group. In line with previous functional connectome findings, the current results provide evidence for altered structural networks at a regional level in children with APD, and an association with listening performance, suggesting the involvement of multimodal deficits and a role for structure-function alteration in listening difficulties of children with APD.

Publisher

Cold Spring Harbor Laboratory

Reference170 articles.

1. Machine learning for neuroimaging with scikit-learn;Frontiers in Neuroinformatics,2014

2. Assessment of children with suspected auditory processing disorder: a factor analysis study;Ear and Hearing,2014

3. Altered brain network topology in children with auditory processing disorder: A resting-state multi-echo fMRI study;NeuroImage: Clinical,2022

4. Impaired Structural Connectivity of Socio-Emotional Circuits in Autism Spectrum Disorders: A Diffusion Tensor Imaging Study

5. American Academy of Audiology (AAA). (2010). Guidelines for the diagnosis, treatment, and management of children and adults with central auditory processing disorder. https://audiology-web.s3.amazonaws.com/migrated/CAPD%20Guidelines%208-2010.pdf_539952af956c79.73897613.pdf

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3