Histone H1.0 Couples Cellular Mechanical Behaviors to Chromatin Structure

Author:

Hu Shuaishuai,Chapski Douglas J.ORCID,Gehred Natalie,Kimball Todd H.,Gromova Tatiana,Flores Angelina,Rowat Amy C.,Chen Junjie,Packard René R. Sevag,Olszewski Emily,Davis Jennifer,Rau Christoph D.,McKinsey Timothy A.,Garrido Manuel Rosa,Vondriska Thomas M.

Abstract

SummaryTuning of genome structure and function is accomplished by chromatin binding proteins, which determine the transcriptome and phenotype of the cell. We sought to investigate how communication between extracellular stress and chromatin structure may regulate cellular mechanical behaviors. We demonstrate that the linker histone H1.0, which compacts nucleosomes into higher order chromatin fibers, controls genome organization and cellular stress response. Histone H1.0 has privileged expression in fibroblasts across tissue types in mice and humans, and modulation of its expression is necessary and sufficient to mount a myofibroblast phenotype in these cells. Depletion of histone H1.0 prevents transforming growth factor beta (TGF-β)-induced fibroblast contraction, proliferation and migration in a histone H1 isoform-specific manner via inhibition of a transcriptome comprised of extracellular matrix, cytoskeletal and contractile genes. Histone H1.0 is associated with local regulation of gene expression via mechanisms involving chromatin fiber compaction and reprogramming of histone acetylation, rendering the cell stiffer in response to cytokine stimulation. Knockdown of histone H1.0 prevented locus-specific histone H3 lysine 27 acetylation by TGF-βand decreased levels of both HDAC1 and the chromatin reader BRD4, thereby preventing transcription of a fibrotic gene program. Transient depletion of histone H1.0in vivodecompacts chromatin and prevents fibrosis in cardiac muscle, thereby linking chromatin structure with fibroblast phenotype in response to extracellular stress. Our work identifies an unexpected role of linker histones to orchestrate cellular mechanical behaviors, directly coupling cellular force generation, nuclear organization and gene transcription.Graphical Abstract

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3