Administration of amniotic fluid stem cell extracellular vesicles promotes development of fetal hypoplastic lungs by immunomodulating lung macrophages

Author:

Antounians LinaORCID,Figueira Rebeca LopesORCID,Kukreja Bharti,Zani-Ruttenstock ElkeORCID,Khalaj KasraORCID,Montalva LouiseORCID,Doktor Fabian,Obed MikalORCID,Blundell MatisseORCID,Wu Taiyi,Chan CadiaORCID,Wagner RichardORCID,Lacher MartinORCID,Wilson Michael D.ORCID,Kalish Brian T.ORCID,Zani AugustoORCID

Abstract

AbstractCongenital diaphragmatic hernia (CDH) is a devastating condition characterized by incomplete closure of the diaphragm and herniation of abdominal organs into the chest. As a result, fetuses have pulmonary hypoplasia, whose severity is the main determinant of poor outcome. The pathogenesis of pulmonary hypoplasia secondary to CDH is at least in part explained by lack or dysregulation of miRNAs that are known to regulate lung developmental processes. Herein, we report that intra-amniotic administration of extracellular vesicles derived from amniotic fluid stem cells (AFSC-EVs) rescues lung growth and maturation in a fetal rat model of CDH. To understand which fetal lung cells and biological pathways are affected by AFSC-EVs, we conducted whole lung single nucleus RNA-sequencing. We discovered that CDH lungs have a multilineage inflammatory signature with macrophage enrichment, and confirmed these findings in autopsy samples of lungs from human fetuses with CDH. Transcriptomic analysis of CDH fetal rat lungs also showed that AFSC-EV treatment reduced macrophage density and inflammation to normal levels. Analyzing the miRNAs contained in the AFSC-EV cargo with validated mRNA targets, we found that the downregulated genes in AFSC-EV treated CDH lungs were involved in inflammatory response and immune system processes. This study reports a single cell atlas of normal and hypoplastic CDH fetal rat lungs and provides evidence that AFSC-EVs restore lung development by addressing multiple pathophysiological aspects of CDH.One Sentence SummaryAmniotic fluid stem cell extracellular vesicle treatment for fetal lung macrophage modulation

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3