Clustering of Type 2 Diabetes Genetic Loci by Multi-Trait Associations Identifies Disease Mechanisms and Subtypes

Author:

Udler Miriam S.ORCID,Kim Jaegil,von Grotthuss Marcin,Bonàs-Guarch Sílvia,Mercader Josep M,Cole Joanne B.,Chiou Joshua,Anderson Christopher D,Boehnke Michael,Laakso Markku,Atzmon Gil,Glaser Benjamin,Gaulton Kyle,Flannick Jason,Getz Gad,Florez Jose C.

Abstract

AbstractBackgroundType 2 diabetes (T2D) is a heterogeneous disease for which 1) disease-causing pathways are incompletely understood and 2) sub-classification may improve patient management. Unlike other biomarkers, germline genetic markers do not change with disease progression or treatment. In this paper we test whether a germline genetic approach informed by physiology can be used to deconstruct T2D heterogeneity. First, we aimed to categorize genetic loci into groups representing likely disease mechanistic pathways. Second, we asked whether the novel clusters of genetic loci we identified have any broad clinical consequence, as assessed in four independent cohorts of individuals with T2D.Methods and FindingsIn an effort to identify mechanistic pathways driven by established T2D genetic loci, we applied Bayesian nonnegative matrix factorization clustering to genome-wide association results for 94 independent T2D genetic loci and 47 diabetes-related traits. We identified five robust clusters of T2D loci and traits, each with distinct tissue-specific enhancer enrichment based on analysis of epigenomic data from 28 cell types. Two clusters contained variant-trait associations indicative of reduced beta-cell function, differing from each other by high vs. low proinsulin levels. The three other clusters displayed features of insulin resistance: obesity-mediated (high BMI, waist circumference), “lipodystrophy-like” fat distribution (low BMI, adiponectin, HDL-cholesterol, and high triglycerides), and disrupted liver lipid metabolism (low triglycerides). Increased cluster GRS’s were associated with distinct clinical outcomes, including increased blood pressure, coronary artery disease, and stroke risk. We evaluated the potential for clinical impact of these clusters in four studies containing participants with T2D (METSIM, N=487; Ashkenazi, N=509; Partners Biobank, N=2,065; UK Biobank N=14,813). Individuals with T2D in the top genetic risk score decile for each cluster reproducibly exhibited the predicted cluster-associated phenotypes, with ~30% of all participants assigned to just one cluster top decile.ConclusionOur approach identifies salient T2D genetically anchored and physiologically informed pathways, and supports use of genetics to deconstruct T2D heterogeneity. Classification of patients by these genetic pathways may offer a step toward genetically informed T2D patient management.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3