Optimal control of Multiple Myeloma assuming drug evasion and off-target effects

Author:

Lefevre James G.ORCID,Lawson Brodie A.J.,Burrage Pamela M.,Donovan Diane M.,Burrage Kevin

Abstract

AbstractMultiple Myeloma (MM) is a plasma cell cancer that occurs in the bone marrow. A leading treatment for MM is the monoclonal antibody Daratumumab, targeting the CD38 receptor, which is highly overexpressed in myeloma cells. In this work we model drug evasion via loss of CD38 expression, which is a proposed mechanism of resistance to Daratumumab treatment. We develop an ODE model that includes drug evasion via two mechanisms: a direct effect in which CD38 expression is lost without cell death in response to Daratumumab, and an indirect effect in which CD38 expression switches on and off in the cancer cells; myeloma cells that do not express CD38 have lower fitness but are shielded from the drug action. The model also incorporates competition with healthy cells, death of healthy cells due to off-target drug effects, and a Michaelis-Menten type immune response. Using optimal control theory, we study the effect of the drug evasion mechanisms and the off-target drug effect on the optimal treatment regime. We identify a general increase in treatment duration and costs, with varying patterns of response for the different controlling parameters. Several distinct optimal treatment regimes are identified within the parameter space.Author summaryIn this work we investigate a model of Multiple Myeloma, a cancer of the bone marrow, and its treatment with the drug Daratumumab. The model incorporates proposed mechanisms by which the cancer evades Daratumumab by reduced expression of the receptor CD38, which is the drug target and normally abundent in the cancer cells. The model includes an off-target effect, meaning that the drug treatment destroys some healthy cells alongside the targeted cancer cells. Both mechanisms can reasonably be expected to reduce the efficacy of the drug. We investigate the model using optimal control methods, which are used to find the drug dose over time which best balances the financial and health costs of treatment against cancer persistence, according to a specified cost function. We show that this drug resistence and off-target effect prolongs the optimal treatment and increase the burden of both the disease and drug. We analyse the distinct effects of the controlling parameters on each of these costs factors as well as the time course, and identify conditions under which extended treatment is required, with either intermittant treatment or a steady reduced dose. Extended treatment may be indefinite or for a fixed period.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3