Membrane binding properties of the cytoskeletal protein bactofilin

Author:

Liu Ying,Karmakar Rajani,Steinchen Wieland,Mukherjee Saumyak,Bange Gert,Schäfer Lars V.,Thanbichler Martin

Abstract

AbstractBactofilins are a widespread family of cytoskeletal proteins with important roles in bacterial morphogenesis, chromosome organization and motility. They polymerize in a nucleotide-independent manner, forming non-polar filaments that are typically associated with the cytoplasmic membrane. Membrane binding was suggested to be mediated by a short N-terminal peptide, but the underlying mechanism and the conservation of this interaction determinant among bacteria remain unclear. Here, we use the bactofilin homolog BacA of the stalked bacteriumCaulobacter crescentusas a model to analyze the membranebinding behavior of bactofilins. Based on site-directed mutagenesis of the N-terminal region, we identify the full membrane-targeting sequence of BacA (MFSKQAKS) and identify amino acid residues that are critical for its functionin vivoandin vitro. Molecular dynamics simulations then provide detailed insight into the molecular mechanism underlying the membrane affinity of this peptide. Collectively these analyses reveal a delicate interplay between the water exclusion of hydrophobic N-terminal residues, the arrangement of the peptide within the membrane and the electrostatic attraction between positively charged groups in the peptide and negative charges in the phospholipid molecules. A comprehensive bioinformatic analysis shows that the composition and properties of the membrane-targeting sequence of BacA are conserved in numerous bactofilin homologs from diverse bacterial phyla. Notably, our findings reveal a mutual interdependence between the membrane binding and polymerization activities of BacA. Moreover, we demonstrate that both of these activities have a pivotal role in the recruitment of the BacA client protein PbpC, a membrane-bound cell wall synthase involved in stalk formation whose N-terminal region turns out to associate with the core polymerization domain of BacA. Together, these results unravel the mechanistic underpinnings of membrane binding by bactofilin homologs, thereby illuminating a previously obscure but important aspect in the biology of this cytoskeletal protein family.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3