PV+ optogenetic stimulations at specific frequencies in specific brain regions can restore navigational flexibility in an acute MK801 mouse model of schizophrenia

Author:

Patrono EnricoORCID,Černotová DanielaORCID,Svoboda JanORCID,Stuchlík Aleš

Abstract

AbstractImpairments of decision-making and behavioral flexibility in schizophrenia (SCZ) are currently the most investigated features. One convincing hypothesis explaining this cognitive impairment is the excitatory/inhibitory (E/I) ratio imbalance in brain regions such as the medial prefrontal cortex (mPFC) and the ventral hippocampus (vHPC). An increased GLUergic excitatory activity and a decreased GABAergic inhibitory activity induces an mPFC-vHPC γ/θ band desynchronization in many tasks testing behavioral flexibility. However, these tasks were carried out using “perceptual” decision-making/flexibility but not navigational decision-making/flexibility. Our study addressed the role of frequency-specific optogenetic stimulations of GABAergic parvalbumin-positive (PV+) interneurons in mPFC (50Hz, γ-like) and vHPC (10Hz, θ-like) in an acute-MK801 mouse model of navigational inflexibility. We used the active place avoidance task on a rotating arena. Results showed that frequency-specific optogenetic stimulations of mPFC or vHPC acted differently in restoring navigational flexibility, advancing our knowledge of the pivotal role of PV+ activity in SCZ-like navigational decision-making/flexibility.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3