Functional ultrasound neuroimaging reveals mesoscopic organization of saccades in the lateral intraparietal area of posterior parietal cortex

Author:

Griggs Whitney S.ORCID,Norman Sumner L.ORCID,Tanter MickaelORCID,Liu Charles,Christopoulos VasileiosORCID,Shapiro Mikhail G.ORCID,Andersen Richard A.ORCID

Abstract

AbstractThe lateral intraparietal cortex (LIP) located within the posterior parietal cortex (PPC) is an important area for the transformation of spatial information into accurate saccadic eye movements. Despite extensive research, we do not fully understand the functional anatomy of intended movement directions within LIP. This is in part due to technical challenges. Electrophysiology recordings can only record from small regions of the PPC, while fMRI and other whole-brain techniques lack sufficient spatiotemporal resolution. Here, we use functional ultrasound imaging (fUSI), an emerging technique with high sensitivity, large spatial coverage, and good spatial resolution, to determine how movement direction is encoded across PPC. We used fUSI to record local changes in cerebral blood volume in PPC as two monkeys performed memory-guided saccades to targets throughout their visual field. We then analyzed the distribution of preferred directional response fields within each coronal plane of PPC. Many subregions within LIP demonstrated strong directional tuning that was consistent across several months to years. These mesoscopic maps revealed a highly heterogenous organization within LIP with many small patches of neighboring cortex encoding different directions. LIP had a rough topography where anterior LIP represented more contralateral upward movements and posterior LIP represented more contralateral downward movements. These results address two fundamental gaps in our understanding of LIP’s functional organization: the neighborhood organization of patches and the broader organization across LIP. These findings were achieved by tracking the same LIP populations across many months to years and developing mesoscopic maps of direction specificity previously unattainable with fMRI or electrophysiology methods.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3