A novel cortical biomarker signature accurately and reliably predicts individual pain sensitivity: The PREDICT longitudinal analytical validation study

Author:

Chowdhury Nahian S,Bi Chuan,Furman Andrew J,Chiang Alan KI,Skippen Patrick,Si Emily,Millard Samantha K,Margerison Sarah M,Spies Darrah,Keaser Michael L,Da Silva Joyce T,Chen Shuo,Schabrun Siobhan M,Seminowicz David A

Abstract

AbstractBackgroundBiomarkers would greatly assist chronic pain management. The present study aimed to undertake analytical validation of a sensorimotor cortical biomarker signature for pain consisting of two measures: sensorimotor peak alpha frequency (PAF) and corticomotor excitability (CME), using a human model of prolonged temporomandibular pain (masseter intramuscular injection of nerve growth factor [NGF]).Methods150 participants received an injection of NGF to the right masseter muscle on Days 0 and 2, inducing prolonged pain lasting up to 4 weeks. Electroencephalography (EEG) to assess PAF and transcranial magnetic stimulation (TMS) to assess CME were recorded on Days 0, 2 and 5. We determined the predictive accuracy of the PAF/CME biomarker signature using a nested control-test scheme: machine learning models were run on a training set (n = 100), where PAF and CME were predictors and pain sensitivity was the outcome. The winning classifier was assessed on a test set (n = 50) comparing the predicted pain labels against the true labels.ResultsThe winning classifier was logistic regression, with an outstanding area under the curve (AUC=1.00). The locked model assessed on the test set had excellent performance (AUC=0.88). Results were reproduced across a range of methodological parameters and inclusion of covariates in the modelling. PAF and CME biomarkers showed good-excellent test-retest reliability.ConclusionsThis study provides evidence for a sensorimotor cortical biomarker signature for an episode of prolonged pain. The combination of accuracy, reproducibility, and reliability, suggests the PAF/CME biomarker signature has substantial potential for clinical translation.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3