Time-based quantitative proteomic and phosphoproteomic analysis of A549-ACE2 cells during SARS-CoV-2 infection

Author:

Milhano dos Santos Fátima,Vindel Jorge,Ciordia Sergio,Castro Victoria,Orera Irene,Garaigorta Urtzi,Gastaminza Pablo,Corrales FernandoORCID

Abstract

AbstractThe outbreak of COVID-19, a disease caused by severe acute respiratory syndrome coronavirus 2, led to an ongoing pandemic with devastating consequences for the global economy and human health. With the global spread of SARS-CoV-2, multidisciplinary initiatives were launched to explore new diagnostic, therapeutic, and vaccination strategies. From this perspective, proteomics could help to understand the mechanisms associated with SARS-CoV-2 infection and to identify new therapeutic targets for antiviral drug repurposing and/or discovery. A TMT-based quantitative proteomics and phosphoproteomics analysis was performed to study the proteome remodeling of human lung alveolar cells transduced to express human ACE2 (A549-ACE2) after infection with SARS-CoV-2. Targeted PRM analysis was performed to assess the detectability in serum and prognostic value of selected proteins. A total of 6802 proteins and 6428 phospho-sites were identified in A549-ACE2 cells after infection with SARS-CoV-2. Regarding the viral proteome, 8 proteins were differentially expressed after 6 h of infection and reached a steady state after 9 h. In addition, we detected several phosphorylation sites of SARS-CoV-2 proteins, including two novel phosphorylation events at S410 and S416 of the viral nucleoprotein.ImportanceThe differential proteins here identified revealed that A549-ACE2 cells undergo a time-dependent regulation of essential processes, delineating the precise intervention of the cellular machinery by the viral proteins. From this mechanistic background and by applying machine learning modelling, 29 differential proteins were selected and detected in the serum of COVID-19 patients, 14 of which showed promising prognostic capacity. Targeting these proteins and the protein kinases responsible for the reported phosphorylation changes may provide efficient alternative strategies for the clinical management of COVID-19.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3