Previously uncharacterized aliphatic amino acid positions modulate the apparent catalytic activity of the EAL domain of ZMO_1055 and other cyclic di-GMP specific EAL phosphodiesterases

Author:

Cao Lianying,Yang Yong-Fu,Bai Feng-wuORCID,Römling UteORCID

Abstract

AbstractThe ubiquitous second messenger cyclic di-GMP is the most abundant diffusible nucleotide signalling system in bacteria deciding the life style transition between sessility and motility. GGDEF diguanylate cyclases and EAL phosphodiesterases conventionally direct the turnover of this signaling molecule. Thereby, those domains are subject to micro- and macroevolution with the evolutionary forces that promote alterations in these proteins currently mostly unknown. While the highly conserved signature amino acids involved in divalent ion binding and catalysis equally as signal transduction modules have been readily identified, more subtle amino acid substitutions that modulate the catalytic activity have been rarely recognized and their molecular mechanism characterized. Our previous work identified the A526V substitution to be involved in downregulation of the apparent catalytic activity of theZymomonas mobilisZM4 PAS-GGDEF-EAL ZMO1055 phosphodiesterase and leading to a self-flocculation phenotype mediated by elevated production of the exopolysaccharide cellulose inZ. mobilisZM401. As A526 is located at a position that has previously not been recognized to affect the catalytic activity of the EAL domain, we further investigated the molecular mechanisms and the functional conservation of this substitution. Using a number of model systems, our results indicate that the alanine at position 526 is highly conserved in ZMO1055 homologs and beyond with the A526V mutation to alter the apparent phosphodiesterase activity in subgroups of EAL domains. Thus we hypothesize that single amino acid substitutions that lead to alterations in the catalytic activity of cyclic di-GMP turnover domains amplify the signaling output and thus significantly contribute to the flexibility and adaptability of the cyclic di-GMP signaling network. In this context, ZMO1055 seems to be a current evolutionary target.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3