Characterization of Cysteine-rich protein families of Giardia lamblia and their role during antigenic variation

Author:

Rodríguez-Walker Macarena,Molina Cecilia R.,Luján Lucas A.,Saura Alicia,Baronetto Verónica M.,Jerlström-Hultqvist Jon,Svärd Staffan G.,Fernández Elmer A.,Luján Hugo D.ORCID

Abstract

AbstractGiardia lamblia encode several families of cysteine-rich proteins. Among these families are the Variant-specific Surface Proteins (VSPs), which are involved in the process of antigenic variation. In addition to VSPs, other Cys-rich proteins have been described, such as High Cysteine Membrane Proteins (HCMPs), High Cysteine Proteins (HCPs) and Tenascin-like Proteins (TLPs). However, these proteins are less characterized and there is no consensus on their subcellular localization, function, expression, and relationship with the VSPs. Although numerous efforts have been made to determine the distinctive characteristics of VSPs and the number of VSP genes present in the genome of Giardia, a clear profile of the VSP repertoire is still lacking. Here, we performed an exhaustive analysis of the Cys-rich families in the recently updated version of the Giardia genome, including their organization, characteristic features, evolution and levels of expression, by combining simple pattern searches and predictions with massive sequencing techniques, integrating and reanalyzing as much omics data as possible. We propose a new classification for the Cys-rich protein-encoding genes and pseudogenes that better describes their involvement in the parasite biology and define unique characteristics of the VSPs that include, besides their known features, an Initiator element/Kozak-like sequence, an extended polyadenylation signal and a unique pattern of mutually exclusive transcript accumulation. Our findings also imply that the HCMPs (now named Cys-Rich Membrane Proteins, CRMPs) are upregulated under stress conditions and might protect the parasite during VSP switching. These results contribute to a better understanding of the process of antigenic variation in this pathogen.Author SummaryThe most common cause of parasite-induced diarrhea is Giardia lamblia. This intestinal parasite causes 180 million cases of symptomatic disease (giardiasis) yearly but also many asymptomatic infections, resulting in that more than 0.5 billion people are currently colonized by the parasite. One key virulence mechanism of G. lamblia, resulting in long-term infections and frequent re-infections, is antigenic variation of Variant-specific Surface Proteins (VSPs). The cysteine-rich VSP proteins are encoded by a multi-gene family but until now the number of genes and how they are regulated has been unclear. Here a recently assembled Giardia reference genome was analyzed using different bioinformatic analyses and this revealed that there are 136 VSP genes in the Giardia genome. The analyses revealed that there are additional cysteine rich proteins in gene families with fewer members that are related to VSPs but with other roles than antigenic variation. A large number of incomplete VSP genes were also identified and they can function as a sequence reservoir for generation of VSP variability. The VSP genes have unique regulatory elements in the upstream and downstream regions, suggesting a role in regulation. Several gene expression data sets were re-analyzed and it showed that one major VSP is expressed per cell. This study is the first to reveal the organization of VSPs in Giardia and it will be the basis for further studies of the mechanism of antigenic variation in this important intestinal parasite.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3