Individualized Gaussian Process-based Prediction of Memory Performance and Biomarker Status in Ageing and Alzheimer’s disease

Author:

Nemali A.,Vockert N.,Berron D.,Maas A.,Yakupov R.ORCID,Peters O.,Gref D.,Cosma N.,Preis L.,Priller J.ORCID,Spruth E.,Altenstein S.,Lohse A.,Fliessbach K.,Kimmich O.,Vogt I.,Wiltfang J.,Hansen N.,Bartels C.,Schott B.H.ORCID,Maier F.,Meiberth D.,Glanz W.ORCID,Incesoy E.,Butryn M.,Buerger K.,Janowitz D.,Ewers M.,Perneczhy R.ORCID,Rauchmann B.ORCID,Burow L.,Teipel S.,Kilimann I.,Göerß D.,Dyrba M.,Laske C.,Munk M.,Sanzenbacher C.,Müller S.,Spottke A.,Roy N.,Heneka M.,Brosseron F.ORCID,Roeske S.,Dobisch L.,Ramirez A.,Ewers M.,Dechent P.,Scheffler K.,Kleineidam L.,Wolfsgruber S.,Wagner M.ORCID,Jessen F.,Duzel E.,Ziegler G.

Abstract

AbstractNeuroimaging markers based on Magnetic Resonance Imaging (MRI) combined with various other measures (such as informative covariates, vascular risks, brain activity, neuropsychological test etc.,) might provide useful predictions of clinical outcomes during progression towards Alzheimer’s disease (AD). The Bayesian approach aims to provide a trade-off by employing relevant features combinations to build decision support systems in clinical settings where uncertainties are relevant. We tested the approach in the MRI data across 959 subjects, aged 59-89 years and 453 subjects with available neuropsychological test scores and CSF biomarker status (amyloid-beta ()42/40 & and phosphorylated tau (pTau)) from a large sample multi-centric observational cohort (DELCODE). In order to explore the beneficial combinations of information from different sources, we presented a MRI-based predictive modelling of memory performance and CSF biomarker status (positive or negative) in the healthy ageing group as well as subjects at risk of Alzheimer’s disease using a Gaussian process multikernel framework. Furthermore, we systematically evaluated predictive combinations of input feature sets and their model variations, i.e. (A) combinations of brain tissue classes and feature type (modulated vs. unmodulated), choices of filter size of smoothing (ranging from 0 to 15 mm full width at half maximum), and image resolution (1mm, 2mm, 4mm and 8mm); (B) incorporating demography and covariates (C) the impact of the size of the training data set (i.e., number of subjects); (D) the influence of reducing the dimensions of data and (E) choice of kernel types. Finally, the approach was tested to reveal individual cognitive scores at follow-up (up to 4 years) using the baseline features. The highest accuracy for memory performance prediction was obtained for a combination of neuroimaging markers, demographics, genetic information (ApoE4) and CSF-biomarkers explaining 57% of outcome variance in out of sample predictions. The best accuracy for 42/40 status classification was achieved for combination demographics, ApoE4 and memory score while usage of structural MRI improved the classification of individual patient’s pTau status.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3